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Abstract: The synthesis of the (%a-difluoroalkyl)phosphonate analogue of Lphosphoserine, 
5, in a form app&riate for solid phase peptide iyn&esi& is reported. Two ind&endent routea 
are described, starting from L-serine or (R)-isopropylideneglycerol. In each case, PCFz-C 
bond formation is achieved by triflate displacement with diethyl 
lithiodifhmromethylphosphonate. 

There is currently considerable inteest in (a.a-difluoroalkyl)phosphonates as analogues of naturally 

occurring phosphates. 1 Data in the literature support the notion that phosphate mimics of this class do indeed 

bind to enzymatic phosphate binding sites. For example, 1 is a potent bisubsuate analogue inhibitor of purine 

nucleoside phosphorylase.2 2 is a substrate for glycerol 3-phosphate dehydrogenase,s and 3 is an irreversible 

inhibitor of EPSP synthase.* More recently, the (a.&difluoroalkyl)phosphonate analogue of phosphotyrosine 

4. was synthesized by two groups 5.6 and has been incorporated into peptides.sa 

The members of the protein phosphoserine/threonine phosphatase class of enzymes, PPl, PP2A, PPZB 

and PP2C. are important mediators of signal transduction events. 7 For example, PP2B (calcineurin) is the 

common target of the immunosuppressants cyclosporin and FK-506.8 Enzymes in this family are known to 

dephosphorylate peptides, in addition to their usual protein substrates.9 Therefore, peptides containing an 

effective, but hydrolyticaliy stable, phosphoserine mimic, are potential inhibitors’of this class of enzymes. We 

report herein the synthesis of 5, a phosphoserine mimic bearing protecting grdups amenable to automated solid 

phase peptide synthesis.* 

Recently. we disdovered that (qa-difluomalkyl)phosphonates may be conveniently synthesized via the 

direct displacement of primary alkyl triflates by diethyl lithiodifluoromethylphosphodate (@.I& We sought to 

apply this methodology to the synthesis of 5. Initially. our approach was to consuucf a D- or L-serinol derived 

hiflate and to examine its triflate displacement chemistry. We were pleased to find that triflates 7a-!la could all 

be synthesized from the corresponding alcohols and were stable to silica gel chromatography. Furthermore, 7a- 

9a do undergo displacement with 6 in 3570% yields to provide the corresponding (a,a- 
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difluomalkyl)phosphonates. 7b-9b. Unfortunately, in all three cases, attempts to remove the nitrogen protecting 

group [2,5-dimethylpyrrole (7b),tt N-tosyl (Sb), 12 and N-benzyl(9b)t3] were unsuccessful. 
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This problem was solved by using a readily removable rert-butyldimethylsilyl protecting group14 for the 

carbamate nitrogen (see Scheme 1). Thus, starting from the known L-serine derivative 10.15 esterification. Boc 

femoval and ester reduction (NaBI-La) proceed smoothly. The resulting W-O-benzylserinol is transformed into 

the corresponding oxazolidinone 11 using triphosgene as a convenient phosgene source.16 N-Silylationt7 and 

benzyl ether hydrogenolysis yield alcohol 12. The corresponding triflate, being quite labile, is generated, and 

then immediately subjected to our usual displacement conditions’0 fo provide (a.a-difluoroalkyl)phosphonate 

13. In this case, N-deprotection is facile (13:l MeOWlN HCl rt, 12 h).14 Installation of the requisite N-Boc 

protecting group and oxazolidinone ring-opening axe accomplished by a modification (EtUH as solvent) of the 

procedure reported by Ishizuka and Kunieda, in quite modest yield. 18 Finally, four-electron oxidation under the 

Corey-Schmidt conditions (6 equivalents of PD@’ yields the desid, protected phosphoserine analog 5.20 
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Scheme 1 

Parallel to these studies, we explored a complementary route to 5 which begins from the readily available 

chiral building block 15.21 Strategically. this approach differs from the previous route, in that hem the a-amino 

group is installed late in the synthesis, and in this way the N-protecting group issue in circumvented. Triflate 

synthesis and displacement10 proceed cleanly to give phosphonate 16. 22 Acetonide cleavage is achieved with 

ethanol, containing Dowex-50 (rt, 2 days). Selective silylation of the primary hydroxyl then gives 17. 

Formation of the secondary triflate is followed by displacement with sodium azide (5 equiv. NaN3, rt. 2 h). 
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Azide hydrogenolysis in the presence of Boc2023 yields the necessary Boc-protected aminophosphonatc 19, 

directly. Chemoselective cleavage of the TBS ether, in the presence of the N-Boc and diethyl 

difluoromethylphosphonate functional groups, is best achieved using the mildly Lewis acidic conditions 

described by Lipshutz.” Oxidation, as before, yields the title compound. 
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Scheme 2 

In summary, we have described the synthesis of L-phosphoserine analog 5, by two independent routes. 

Both emanate from readily available building blocks out of the chiral pool. In each case, the critical PCF2-C 

bond is fashioned by the direct displacement of a primary triflate with 6.10 The synthesis of 5 from (R)- 

isopropylideneglycerol is clearly the more efficient procedure, at this time. Studies on the effectiveness of 5 as a 

hydmlytically stable phosphoscrinc mimic will be reported in due course. 
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